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Abstract

Recent progress in three di�erent areas involving the modeling of the physical properties of composites is

reviewed. These include: (i) theoretical approaches to microstructure/property relations; (ii) X-ray microtomography,
an imaging technique that enables one to obtain high-resolution three-dimensional microstructural phase
information of a composite sample in a non-intrusive manner; and (ii) topology optimization, a promising numerical

technique that enables one to design composites with tailored material properties. Current limitations and future
research needs are described. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The problem of determining the macroscopic or e�ective physical properties of composite media is a
classical one in science and engineering, attracting the attention of such luminaries as Maxwell (1873)
and Einstein (1906). In the most general sense, a heterogeneous material consists of domains of di�erent
materials (phases) or the same material in di�erent states. Attention here is focused on the many
instances in which the `microscopic' length scale (e.g., the average domain size) is much larger than the
molecular dimensions (so that the domains possess macroscopic properties) but much smaller than the
characteristic length of the macroscopic sample. In such circumstances, the heterogeneous material can
be viewed as a continuum on the microscopic scale and macroscopic or `e�ective' properties can be
ascribed to it. Such heterogeneous media abound in nature and in man-made situations: examples
include aligned and chopped ®ber composites, porous and cracked media, polycrystals, polymer blends,
foams, ¯uidized beds, photographic emulsions, cermets, soils, rocks, blood, and animal and plant tissue,
to mention a few.

In light of the manifest technological importance of determining the e�ective parameters of disordered
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heterogeneous materials (e.g., composite and porous media), an enormous body of literature has evolved
based upon direct measurement, empirical relations, and approximate as well as rigorous theoretical
methods (see Beran, 1968; Christensen, 1979; Willis, 1981; Torquato, 1991; and references therein).
Performing direct measurements on each material sample, for all possible phase property values and
volume fractions, is prohibitive from a time and cost standpoint. Empirical relations are more useful for
correlating data rather than predicting them. Since e�ective properties are sensitive to the details of the
microstructure, a broader approach is to calculate the properties from the microstructure of the
disordered material; one can then relate changes in the microstructure quantitatively to changes in the
macroscopic parameters. This has important implications for the design of materials with tailored
properties.

In this report, we survey developments in three di�erent areas:

. theoretical approaches to microstructure/property relations;

. X-ray microtomography, an imaging technique that enables one to obtain high-resolution three-
dimensional microstructural phase information of a composite sample in a nonintrusive manner; and

. topology optimization, a promising numerical technique that enables one to design composites with
tailored material properties.

Considering the vastness of the literature, no attempt will be made to discuss all of the key
developments. The physical properties that we will focus on include the elastic moduli, conductivity
(thermal or electrical), thermal expansion coe�cients, piezoelectric coe�cients, and failure characteristics
of composites. However, we point out that other seemingly di�erent properties (¯uid permeability and
trapping rate) have been approached with same tools that will be described below (Torquato, 1991). In
other words, it pays to view all types of physical properties of composites under the same general light.

2. Theoretical developments

2.1. Beyond volume fraction information

For simplicity, we will focus the discussion on composites consisting of two di�erent phases
designated as phases 1 and 2. Depending upon the physical context, the ith phase can be either solid,
¯uid, or void, and is characterized by a set of physical properties (elastic moduli, strength, conductivity,
etc.) as well as a constant volume fraction fi, in the case of a statistically uniform systems. The volume
fraction is the simplest but most important piece of microstructural information.

Many practitioners still insist on using simple mixture rules to predict the physical properties of
composites. For example, two popular mixture rules for some arbitrary e�ective property Ke are the so-
called arithmetic average

Ke � K1f1 � K2f2 �1�
and the harmonic average

Ke � K1K2

K1f1 � K2f2

, �2�

where Ki is the property of phase i. It is seen that both the arithmetic average Eq. (1) and the harmonic
average Eq. (2) only incorporate the phase volume fractions. Such mixture rules are not only used to
estimate linear properties of composites, such as elastic moduli and conductivity, but nonlinear
properties, such as strength. In the case of linear properties, it is well known that the arithmetic average
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Eq. (1) generally grossly overestimates the e�ective property, whereas the harmonic average Eq. (2)
generally grossly underestimates the e�ective property.

Popular among more sophisticated practitioners are e�ective-medium or self-consistent
approximations (Hill, 1965; Budiansky, 1965) for dispersions of inclusions in a matrix. The basic idea is
to embed a typical inclusion in a matrix that has the unknown e�ective property. The resulting

Fig. 1. Gray-scale digitized microscope image of a three-phase boron carbide/aluminum composite: white region is Al phase, black

region is B4C phase, and gray region is Al4BC phase. The B4C and Al phases are the dominant ones.

S. Torquato / International Journal of Solids and Structures 37 (2000) 411±422 413



expression for the e�ective property depends on the phase properties and volume fractions, and on the
inclusion shape. Self-consistent approximations break down even for moderate to high phase contrast
values (Christensen, 1979; Torquato, 1998) and, in particular, predict spurious percolation thresholds for
dispersions. Indeed, it has been shown that self-consistent approximations are exact for media that
possess a type of topological symmetry that typical particulate and ®ber-reinforced composites do not
possess. Thus, self-consistent approximations should not be applied to dispersions unless the phase
contrast is small enough. Nonetheless, many continue to apply it to dispersions because of its appeal as
a simple analytical expression.

In the case of dispersions of particles in a matrix, it crucial in a model to capture the fact that the
matrix and particle phases are connected and disconnected, respectively. Composite-spheres models
(Hashin, 1962; Christensen and Lo, 1979) attempt to incorporate such topological features while
utilizing volume fraction information only. Resulting analytical expressions for the e�ective elastic
moduli provide good agreement with experimental data on dispersions provided there is no signi®cant
clustering of the particles. When clustering is a factor, one must include microstructural information
beyond that contained in the volume fractions.

Approaches to modeling e�ective properties of more complex microstructures with just volume
fraction information must break down. For example, Fig. 1 shows a micrograph of the rather complex
microstructure of a three-phase boron carbide/aluminum composite (Torquato et al., 1999). Here, both
the boron carbide and aluminum phases are connected (although in two dimensions, only the boron
carbide phase appears to be connected) and it is clear that one is hard-pressed to extract a simple unit
cell (as is typically done for dispersions) that captures the overall behavior.

From these examples, we can see that the e�ective properties must depend upon microstructural
information beyond that contained in phase volume fractions; i.e., what we will refer to as higher-order
microstructural information. How do we precisely quantify this higher-order microstructural
information, and can we incorporate this information to predict the e�ective properties? Clearly, we
want to accomplish these tasks using ®rst principles. It turns out that for linear e�ective properties
(elastic moduli, conductivity, etc.) there are exact system-independent approaches as well as rigorous
bounding techniques that systematically lead one to precise microstructural functions. These quantities
take the form of various types of n-point statistical correlations, depending on the physical property of
interest.

2.2. Bounds/microstructure relations

Unfortunately, in virtually all situations, the details of the microstructure (all of the correlation
functions) are not completely known. This naturally leads one to attempt to estimate the e�ective
properties from partial statistical information (lower-order correlation functions) and, in particular, to
establish the range of possible values the e�ective properties can take given such limited microstructural
information; i.e., to determine rigorous upper and lower bounds on the properties. Traditionally,
minimum energy principles are used to generate bounds on e�ective properties.

Improved bounds are bounds that depend nontrivially upon two-point and high-order correlation
functions and thus involve information beyond that contained in the volume fractions. In the cases of
the conductivity and elastic moduli of isotropic materials, for example, improved bounds are those
which are tighter than the Hashin±Shtrikman bounds (Hashin and Shtrikman, 1962, 1963). Improved
bounds on a variety of di�erent e�ective properties have been derived in terms of Sn(x

n ), i.e., the
probability of ®nding n points at positions xn0x1,..., xn in one of the phases for linear materials (Beran,
1968; Milton, 1982; Milton and Phan-Thien, 1982; Torquato, 1991) as well as nonlinear materials
(Willis, 1991; Ponte Castaneda and Suquet, 1998). Three- and four-point bounds on the elastic moduli
and conductivity of various composites have been computed (Torquato, 1991). Although such three-
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and four-point bounds can provide signi®cant improvement over two-point bounds, the bounds diverge
as the contrast between the phase properties increases. The upper bound, for example, generally diverges
to in®nity when phase 2 is superrigid relative to phase 1, even if phase 2 is topologically disconnected.
The reason for this behavior is that lower-order Sn do not re¯ect information about percolating clusters
or connected paths in the system and, accordingly, bounds involving such lower-order information are
referred to as conventional improved bounds. Nonetheless, it is important to emphasize that one of the
bounds can still provide a good estimate of the properties in high-contrast situations (Torquato, 1991),
depending on whether the system is above or below the percolation threshold; i.e., the point at which a
disconnected phase becomes connected. Conventional bounds on e�ective properties have been given in
terms of other types of statistical quantities, including point/q-particle functions Gn (n = 1+q )
(Torquato, 1986a) and surface±void Fsv and surface±surface Fss correlation functions (Doi, 1976).

Although conventional bounds can still be valuable for extreme contrast situations, it highly desirable
to derive sharper bounds in terms of morphological quantities that better re¯ect percolation or
connectedness information. Such bounds have been recently derived and computed (Torquato and
Rubinstein, 1991) for the problem of conduction in particle suspensions in terms of the nearest-neighbor
distribution function HP. Moreover, bounds on certain di�usion parameters for porous media have been
expressed in terms of the pore-size distribution function P(d ) (Torquato and Avellaneda, 1991).

2.3. Microstructure characterization

The previous section described some of the di�erent types of statistical correlation functions (Sn, Gn,
Fsv, Fss, HP, P ) that have arisen in rigorous bounds on e�ective properties. Until recently, application of
such bounds (although in existence for almost thirty years in some cases) was virtually nonexistent
because of the di�culty involved in ascertaining the correlation functions. Are these di�erent functions
related to one another? Can one write down a single expression that contains complete statistical
information? The answers to these two queries are in the a�rmative.

For statistically inhomogeneous systems of identical d-dimensional spheres, a general n-point
distribution function Hn has been introduced and represented (Torquato, 1986b). From the general
quantity Hn, one can obtain all of the aforementioned correlation functions and their generalizations.
This formalism has been generalized to treat polydispersed spheres, anisotropic media (e.g., aligned
ellipsoids and cylinders) and cell models (see Torquato, 1991). We should mention that quantities that
are superb signatures of clustering and percolation have been studied and evaluated (Torquato, 1991).

In the last decade or so, considerable progress has been made on the determination of statistical
correlation functions from computer simulations (Monte Carlo and molecular dynamics). From a
theoretician's point of view, simulations may be regarded as `experiments' that one may test theories
against for speci®c models of heterogeneous media. Computer simulations also o�er a means of
studying model systems which may be too di�cult to treat theoretically. Obtaining statistical measures,
such as Hn, from simulations is a two-step process. First, one must generate realizations of the
disordered medium. Second, one samples each realization for the desired quantity and then averages
over a su�ciently large number of realizations.

2.4. Cross-property relations

An intriguing fundamental as well as practical question is the following: Can di�erent properties of
the heterogeneous material be rigorously linked to one another? Such cross-property relations would be
of great utility in the multifunctional design of composites. In particular, can the overall thermal
(electrical) response of a composite to an applied thermal (electrical) load be related rigorously to the
overall linear mechanical response of the same medium to an applied mechanical load?
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Rigorous cross-property bounds that link conductivity and elastic moduli have been obtained (Milton,
1984; Berryman and Milton, 1988). Subsequently, these results were improved upon using the so-called
translation method (Gibiansky and Torquato, 1996). How sharp are these cross-property estimates, given
an exact determination of one of the e�ective properties? To examine this question, one can utilize exact
results for the e�ective conductivity and e�ective bulk modulus Ke of hexagonal arrays of
superconducting, superrigid inclusions (phase 2) in a matrix. Agreement between the cross-property
bounds and the exact elastic-moduli data is remarkably good. It is noteworthy that standard variational
upper bounds on the e�ective properties (such as Hashin±Shtrikman) here diverge to in®nity as they do
not incorporate information that the superrigid phase is in fact disconnected. By contrast, the cross-
property upper bound uses the fact that the in®nite-contrast phase is disconnected via conductivity
information.

2.5. In¯uence of spatial variability on failure of composites

The ®eld of failure in composites is a huge one and cannot be covered in the limited space of this
report. The reader is referred to the contributions of Dvorak et al. (1992), Budiansky et al. (1995), Zhou
and Curtin (1995) and Christensen (1997) on the failure of various ®ber composites, Haubensack et al.
(1995) on crack propagation in brittle composites, and the paper by Dvorak (2000) who reviews
developments in the inelastic response of composites. Our limited focus here will be on the utility of
statistical mechanics to characterize microstructure ¯uctuations and failure in composites.

It is of great practical interest to understand how spatial variability in the microstructure of
composites a�ects the failure characteristics of the heterogeneous materials (see Fig. 2). It is useful to
discuss several examples reported in the literature that illustrate this point. Barsoum et al. (1992)
reported data on strength versus ®ber spacing for borosilicate glass reinforced with SiC ®bers under
three-point bending. Matrix cracks initiated at a lower stress as the local ®ber spacing increased. Thus,
the important length scale is the largest inter®ber spacing, i.e., the extreme statistics govern the strength.
This implies that naive attempts to estimate the strength using a simple rule of mixture relation Eq. (1)
must necessarily fail since volume fraction information is equivalent to average ®ber spacing. Botsis et
al. (1997) subsequently showed that a Gri�th-type scaling relation for the strength involving the largest
inter®ber spacing provided good correlation with the data.

In another experimental study, MacKay (1990) investigated cracking in unidirectional metal matrix
composites under thermal cycling. It was found that residual stresses caused matrix cracks and
interfacial debonding. Cracking was related to the ®ber distribution; more cracking occurred between
the more closely spaced ®bers within a row. Finally, in a theoretical study on the compressive strength
of unidirectional composites by Chung and Weitsman (1994), it was found that random ®ber spacing

Fig. 2. Two systems at the same volume fraction but the right-most example has greater ¯uctuations. The failure characteristics of

these systems can be dramatically di�erent from one another.
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instigated the formation of severe transverse loadings on the ®bers. The analysis required the probability
density of ®ber spacing.

We see from these three examples that spatial ¯uctuations in the microstructure can have important
consequences for the failure characteristics of composites. Microstructure ¯uctuations is a topic of long-
standing interest in the statistical physics community, but much of this work has not permeated the
applied mechanics or materials science communities. For example, using the machinery of statistical
mechanics, the statistics of inter®ber spacing (Torquato and Lu, 1993) and local volume fraction
¯uctuations within an `observation' window (Quintanilla and Torquato, 1997) have been quanti®ed.
Such statistical measures are of direct relevance to all three of the aforementioned problems since they
contain information about all of the statistical moments.

3. X-ray microtomography

Much of the early work on characterizing the microstructure of heterogeneous materials was done via
sectioning. This approach is unsatisfactory, especially in biomedical applications, not only because it
destroys the sample but it often also causes the sections themselves to be altered during the sectioning
process. Non-invasive techniques needed to be developed. Transmission microscopy and scanning
tunneling electron microscopy are now well-established non-invasive techniques but are limited to two-
dimensional information.

It is well established that the physical properties of composites are generally sensitive to the full three-
dimensional structure of the samples. X-ray microtomography (Flannery et al., 1987), and confocal
microscopy (Fredrich et al., 1995) are relatively new noninvasive techniques that provide three-
dimensional phase information.

Computer-aided tomography (CAT) scans are a common way to obtain three-dimensional phase
information, especially in the medical ®eld. However, the resolution obtained is limited to approximately

Fig. 3. Fountainebleau sandstone: lighter shade is void and darker shade is solid.
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0100 mm. Synchrotron-based X-ray microtomography (Flannery et al., 1987) provides a means to have
both high resolution (11 mm) and non-destructive evaluation of three-dimensional structural
information. Recently, microtomographic methods have been used to study the structure and properties
of sandstones (Coker et al., 1996). The microtomography data and reconstructed three-dimensional
maps of the samples X-ray opacity were collected using beamline X2B located at the National
Synchrotron Light Source (NSLS) of Brookhaven National Laboratory.

In the case of sandstone, the digitized image is stored as a 512 � 512 � 512 matrix of voxel values.
The values stored in these voxels (which corresponded to the electron densities in the sample) are then
binned, and the two phases show up as two peaks in a histogram of the electron density values. Once a
cuto� value is determined to distinguish the phases, the sample is stored as a matrix of bits,
corresponding to values of either 0 (matrix phase) or 1 (void phase). Fig. 3 shows a surface cut of a
Fountainebleau sandstone. Note the complexity of the void space. One can now extract the
microstructural functions that determine the property behavior from this image using the simulation
techniques discussed in the previous section. In this way, the ¯uid permeability and the trapping
constant were estimated for this sample.

4. Topology optimization

A promising new method for the systematic design of composites as well as smart material systems is
the topology optimization method. The topology optimization method was developed a decade ago by
Bendsùe and Kikuchi (1988) and was originally intended for the design of mechanical structures. It is
being used not only to solve structural problems but also in smart and passive material design,
mechanism design, MicroElectroMechanical Systems (MEMS) design and many other design problems
(Sigmund, 1994; Larsen et al., 1997; Sigmund and Torquato, 1997; Sigmund et al., 1998).

The basic topology optimization problem can be stated as follows: distribute a given amount of
material in a design domain such that an objective function is extremized (Bendsùe and Kikuchi, 1988;
Bendsùe, 1995). The objective function can be any combination of the individual components of the

Fig. 4. Optimal microstructure for minimization of e�ective thermal expansion coe�cient (Sigmund and Torquato, 1997). White

regions denote void, black regions consist of low expansion material and cross-hatched regions consist of high expansion material.
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relevant e�ective property tensor subject to certain constraints. The design domain is the periodic base
cell and is initialized by discretizing it into a large number of ®nite elements. The problem consists in
®nding the optimal distribution of the base materials and/or void, such that the objective function is
minimized. The optimization procedure solves a sequence of ®nite element problems followed by
changes in material type (density) of each of the ®nite elements, based on sensitivities of the objective
function and constraints with respect to design changes (Sigmund and Torquato, 1997).

The topology procedure has been employed to design composite materials with extreme elastic
(Larsen et al., 1997), thermal (Sigmund and Torquato, 1997) or piezoelectric properties (Sigmund et al.,
1998). Materials with extreme or unusual thermal expansion behavior are of interest from both a
technological and fundamental standpoint. Zero thermal expansion materials are needed in structures
subject to temperature changes such as space structures, bridges and piping systems. Materials with
large thermal displacement or force can be employed as `thermal' actuators. A negative thermal
expansion material has the counterintuitive property of contracting upon heating. A fastener made of a
negative thermal expansion material, upon heating, can be inserted easily into a hole. Upon cooling, it
will expand, ®tting tightly into the hole. All three types of expansion behavior have been designed
(Sigmund and Torquato, 1997).

To illustrate the capability of the method, we discuss the negative expansion case for which we must
consider a three-phase material: high expansion material, low expansion material, and void region. Fig.

Fig. 5. Prototype of one base cell made by stereolithography. This special porous solid has negative Poisson's ratio and, when used

as a matrix in a piezocomposite, maximizes hydrophone performance.
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4 shows the two-dimensional optimal design that we found; the main mechanism behind the negative
expansion behavior is the reentrant cell structure having bimaterial components which bend (into the
void space) and cause large deformation when heated.

In the case of piezoelectricity, actuators that maximize the delivered force or displacement can be
designed. Moreover, one can design piezocomposites (consisting of an array of parallel piezoceramic
rods embedded in a polymer matrix) that maximize the sensitivity to acoustic ®elds. The topology
optimization method has been used to design piezocomposites with optimal performance characteristics
for hydrophone applications (Sigmund et al., 1998). When designing for maximum hydrostatic charge
coe�cient, the optimal transversally isotropic matrix material has negative Poisson's ratio in certain
directions. This matrix material itself turns out be a composite, namely, a special porous solid. Using an
AutoCAD ®le of the three-dimensional matrix material structure and a stereolithography technique,
such three-dimensional negative Poisson's ratio materials have actually been fabricated (Sigmund et al.,
1998). Such a prototype cell (cellular solid made from a polymer) is shown in Fig. 5.

5. Research needs

. The intersection of solid mechanics with biology will play a major role in the future. Virtually all
biological material systems are composites that are found to have at least one distinct structural
feature at a variety of length scales. A formalism to predict the e�ective properties of such complex
multi-scale composites is currently lacking.

. The machinery of statistical mechanics has yet to be fully exploited in the study of composites.
Outstanding problems where such tools can be fruitfully applied include the characterization of the
microstructure of statistically inhomogeneous media (such as functionally graded materials) as well as
the toughness and strength of composites.

. Presently, three-dimensional imaging techniques are limited by resolution and/or the types of
materials that can be imaged. Experimental methods must be developed that will enable us to image
in three dimensions a wide class of materials and over a wide spectrum of length scales. Such
information can be read into a computer and then analyzed and visualized as one desires.

. The topology optimization procedure is in its infancy and its potential has yet to be realized in
optimal design applications involving linear properties, not to mention nonlinear properties. This
computational method combined with improved fabrication techniques will make optimal design of
real composite materials (including multifunctional design) a reality in the future.
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